If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3-7x=0
a = 4; b = -7; c = +3;
Δ = b2-4ac
Δ = -72-4·4·3
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-1}{2*4}=\frac{6}{8} =3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+1}{2*4}=\frac{8}{8} =1 $
| (2x+120)/2=4x | | 5/6×36/1=x | | 4x+3=1/2x+10 | | 3x+8x=17.75 | | 2x+120/2=4x | | -(x-16)=3x | | .5x^2+4x-160=0 | | 100=1-11n/2 | | X^2+x-112=180 | | 3n/10=3= | | 3/4(4x+16)+2x=7 | | X^2+x-212=180 | | 7+5x=39 | | 4x+3=1/2×+10 | | -4(x+10)–6=-3(x–2) | | 1/3(6+4d)-3d=-10 | | 21-5x-(3x-1)=5x-12 | | 4x^2-11=53 | | 5x+(8/x)+12=0 | | -3+4x=18 | | 71-1x=-11+131 | | 40x=-12x | | 8y-2y=-10 | | s/2+s/4+s/8=s-1800 | | 2x+7=6x+2 | | s/2+s/4+s/8+1800=s | | -7x-5(-x-9)=55 | | 40x+500=x | | 3/5x=22/5 | | 7x-2(3x-6)=3 | | -1/9(x+27)+1/3(x+3)=x+6 | | 7y=56-y |